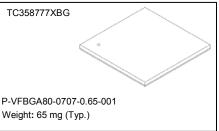
TC358770AXBG

CMOS Digital Integrated Circuit Silicon Monolithic

TC358770AXBG/TC358777XBG

Mobile Peripheral Devices


Overview

This Functional Specification defines operation of TC358770AXBG / TC358777XBG chip, which concatenates two DSI streams of video packets, one from each DSI link into a single DisplayPort[™] video stream.

The only difference between TC358770AXBG and TC3587777XBG is the package size. TC358770AXBG housed in a 5.0 mm by 5.0 mm size package with 0.4 mm ball pitch. While TC358777XBG housed in a 7.0 mm by 7.0 mm size package with 0.65 mm ball pitch.

TC358770AXBG / TC358777XBG exhibits two independent 4-data lane DSI receivers and one 4-lane DisplayPort transmitter. Each DSI link data lane can receive data up to 1 Gbps/lane, with up to 8 Gbps total input data rate. Each DSI receiver link can activate 0-, 1-, 2-, 3- or 4-data lanes independently. DP main link can toggle bit rate at either 1.62 or 2.7 Gbps per lane, with maximum output data rate at 8.64 Gbps. DP transmitter is able to operate with 1-, 2 or 4-lanes in its main link.

P-VFBGA100-0505-0.40-001 Weight: 40 mg (Typ.)

The target application is for high resolution DisplayPort panels, whose bandwidth requirement cannot be met by a single 4-data lane DSI link @4 Gbps. TC358770AXBG is an ideal bridge chip which enables application processors, or hosts, with dual DSI links to drive up to 2560 x 2048 x 24 (or 18) DisplayPort panels @60fps.

Features

- TC358770AXBG / TC358777XBG follows the following standards:
- ♦ MIPI® DSI version 1.02, Jan 2010.
- ♦ MIPI® D-PHY version 1.0, May 2009.
- ♦ VESA DisplayPortTM Standard version 1.1a, Jan.
 11 2008.
- → Digital Content Protection LLC, HDCP version 1.3 with DisplayPortTM amendment revision 1.1, Jan. 15 2010.
- DSI Receiver
- Dual 4-Data Lane DSI Link with Bi-direction support at Data Lane 0, it can be used in 1-, 2-, 3- or 4-data lane configuration.
- ♦ Maximum speed at 1 Gbps/lane.
- ♦ Video input data formats: RGB-565, RGB-666
 and RGB-888.
- ♦ New DSI V1.02 Data Type, 16-bit YCbCr 422, is supported.
- ♦ Interlaced video mode is not supported.
- Provide path for DSI host/transmitter to control TC358770AXBG / TC358777XBG and its attached panel.
- DSI Link High Speed clock, DSIClk or an external clock, RefClk, is required before programming TC358770AXBG.

- DisplayPortTM Source/Transmitter
 - ♦ VESA DisplayPortTM Rev 1.1a Standard.
 - Bit Rate @ 1.62 or 2.7 Gbps, Voltage Swing @0.4, 0.6, 0.8 or 1.2 V, Pre-Emphasis Level @0, 3.5 or 6dB.
 - There are four lanes available in DP main Link, which can operate in 1-, 2- or 4-lane configuration.
 - AUX channel with nominal bit rate at 1 Mbps.
- ♦ After receiving DSI link burst data, TC358770AXBG / TC358777XBG retimes video data to DP panel's pixel clock for Synchronous (to DisplayPortTM link symbol clock, LSClk) Clock Mode operation.
- ♦ SSCG with up to 30 kHz modulation to reduce FMI
- → Built in PRBS7 Generator to test DisplayPortTM
 Link without DSI input.
- ♦ Built in Color Bar Generator to verify DisplayPortTM protocol.
- ♦ Secure ASSR (Alternate Scrambler Seed Reset) support for eDP panels
 - System designer connects ASSR_DisablePad to an inner ring VSS_IO pad, e.g. pad E4, to enable eDP panels and ASSR

- Drive ASSR_DisablePad with an inner ring VDDS pad, e.g. pad D5, for using DP panels and disable ASSR
- System software read Revision ID field, 0x0500[7:0]:
- ➤ 0x01 indicates eDP panels are used, DPCD register bit 0x0010A[0] of eDP panel should be set.
- Ox03 assumes DP panels are connected, DPCD register bit 0x0010A[0] of DP panel should Not be set.

• I2C Slave Port

- → Support for normal (100 kHz), fast (400 kHz) and ultra fast modes (2 MHz, depending on SysClk frequency).
- ♦ Address auto increment is supported.
- → TC358770AXBG / TC358777XBG Slave Port address is 0x68, (binary 1101_000x) where x = 1 for read and x = 0 for write. The slave address can be changed to 0x0F (binary 0001_111x) by tying pin SPI SS/I2C ADR SEL to high.

SPI Slave Interface

- ♦ Slave select pin supported.
- ♦ Transfer Frame size of 48 bits.
- ♦ Maximum clock speed is up to 30 MHz.

Audio Interface

- Support either I2S or TDM (Time Division Multiplex) mode.
- → TDM mode can support 2, 4, 6 and 8 channel of audio data.
- ♦ Sample frequency, fs, supported: 32, 44.1, 48, 88.2, 96, 176.4 & 192 kHz.
- ♦ 512 * fs audio oversample clock is required to generate accurate auido clock timestamps in order for the DisplayPort[™] panel to recover audio clock correctly.
- Ability to insert IEC60958 status bits and preamble bits per channel.

Operation

- ♦ Host programs TC358770AXBG / TC358777XBG either by using DSI link 0(DSI0), I²C bus or SPI bus.

- Host splits a video line data into two streams of DSI video packets. Host has two options to split the video line data:
 - Left-Right Side: Left (first) side video packet goes to DSI0 and Right side data to DSI1.
 - Even-Odd Group: Even (first) groups of pixels are transmitted in DSI0 while Odd ones are carried by DSI1.
 - ➤ The number of pixels per group is programmable; from 1 to 64.
 - ➤ The number of pixels per group and/or the number of groups in each video packet can be different between the two DSI links. This feature in connection with TC358770AXBG's capability to support configurable number of data lanes.
- It is recommended that host pack the split video line data into one video packet for each DSI link before transmitting. However, TC358770AXBG / TC358777XBG supports multiple DSI packets per horizontal line time as long as DSI link bandwidth is enough for the overhead.
- ♦ TC358770AXBG / TC358777XBG is responsible to generate video frame timing based on the register values set by the Host. Host does not have to care/generate video horizontal timings, such as Horizontal Front/Back Porch and Horizontal Pulse width. Host is responsible to send the video data packets to TC358770AXBG / TC358777XBG in time line-by-line and separated each line data by HSS.
- Host is expected to send exactly one line of video data per horizontal sync period between the two DSI links.
- Host is expected to start HSS₀, HSS packet of DSI₀, and HSS₁, HSS packet of DSI₁, either at "the same time" or with fixed delay/skew between them (HSS₀ earlier than that of HSS₁).
- ➤ "The same time" means within +/- 5 clock cycles.
- The time skew between the two DSI links'
 Hsync Start, HSS, packet cannot drift more than
 one video line time within one video frame
 period.
- Host is recommended to use the same clock source to generate both DSI link clocks in order to prevent these two clocks from drifting away.
- Otherwise, clock sources with 50 ppm accuracy are required.
- It is recommended that each DSI link sends HSS and video packets back-to-back. Host can insert variable length of blanking packet between HSS and video packets as long as the bandwidth is allowed.

- → TC358770AXBG / TC358777XBG concatenates two (streams of) video packets, one (stream) from each DSI link, into a single DisplayPortTM video stream before transmitting it out to the panel.
- Clock Source:
- ♦ An external reference clock, RefClk, is used to drive PLLs for generating DisplayPortTM's stream/pixel clock, StrmClk/PixelClk, and Link Symbol Clock, LSClk.
- Support DisplayPort[™] Synchronous (StrmClk and LSClk) Clock Mode.
- Allowed RefClk Frequency Value: 13, 19.2, 26, 38.4 MHz.
- Optionally, DSI DSICIk can be used/divided down to replace RefClk and drive PLLs used to generate the required clocks.
- The divisor, from DSI ByteClk, can be either

$$> 3$$
 (115.2 ÷ 3 = 38.4)

$$> 4$$
 (104 ÷ 4 = 26)

$$> 5$$
 (96 ÷ 5 = 19.2)

$$> 9$$
 (117 ÷ 9 = 13)

- Power Supply
- ♦ MIPI® D-PHY and DP PHY: 1.2 V
- ♦ Core: 1.2 V♦ DP-PHY: 1.8 V
- ♦ I/O: 1.8 V to 3.3 V (all IO pins must be same power level)
- ♦ HPD Input Pad 3.3 V
- THE III HOLL FAU 3.3 V
- Power Consumption (Typical Condition)
- ♦ Sleep State, with RESX asserted
- 12 mW
- 2560 × 1440 × 24@60fps
- Dual DSIRx, each link @3.7 Gbps
 - > 31 mW for both Links
- Core
 - > 165 mW
- DP Tx (2.7 Gbps Link speed @4 lanes, 0.4 V Swing without Pre-Emphasis)
 - > 168.5 mW
- Total = 364.5 mW

Table of contents

REFERENCES		6
1. Introduction.		7
2. Features		9
3. External Pins	3	12
3.1. TC3587	70AXBG Pin Layout	12
3.2. TC35877	77XBG Pin Layout	13
3.3. TC35877	70AXBG Pinout Description	14
3.4. TC35877	77XBG Pinout Description	16
4. Package		18
5. Electrical cha	aracteristics	20
5.1. Absolute	Maximum Ratings	20
5.2. Operatin	g Condition	20
5.3. DC Elect	trical Specification	20
6. Revision His	tory	21
RESTRICTION	S ON PRODUCT USE	22
	List of Figures	
Figure 1.1	TC358770AXBG / TC358777XBG in System Application	8
Figure 1.2 Figure 3.1	TC358770AXBG / TC358777XBG Block Diagram and Functional TC358770AXBG Chip Pin Layout (Top view)	
Figure 3.2	TC358777XBG Chip Pin Layout (Top view)	13
Figure 4.1 Figure 4.2	TC358770AXBG Package DimensionTC358777XBG Package Dimension	
90.0		
	List of Tables	
Table 3.1 Table 3.2	TC358770AXBG Functional Signal ListPin Count Summary	
Table 3.3	TC358777XBG Functional Signal List	16
Table 3.4 Table 4.1	Pin Count Summary TC358770AXBG Package Details	17 12
Table 4.2	TC358777XBG Package Details	19
Table 6.1	Revision History	21

- MIPI is registered trademark of MIPI Alliance, Inc.
- VESA, VESA logo and the DisplayPort Icon are trademarks of the Video Electronics Standards Association.

REFERENCES

- 1. MIPI D-PHY, "MIPI Alliance Specification for D-PHY Version 1.00.00 14-May-2009"
- 2. MIPI Alliance Standard for DSI Version 1.02.00 28 June 2010
- 3. VESA DisplayPort Standard (Version 1, Revision 1a January 11, 2008)
- 4. VESA Embedded DisplayPort (eDP) Standard (Version 1.1 October 23, 2009)
- 5. Digital Content Protection LLC, HDCP (Version 1.3 with DisplayPort amendment Revision 1.1, Jan. 15 2010)
- 6. I²C bus specification, version 2.1, January 2000, Philips Semiconductor

1. Introduction

This Functional Specification defines operation of TC358770AXBG / TC358777XBG chip, which concatenates two DSI streams of video packets, one from each DSI link into a single DisplayPort TM video stream.

The only difference between TC358770AXBG and TC358777XBG is the package size. TC358770AXBG housed in a 5.0 mm by 5.0 mm size package with 0.4 mm ball pitch. While TC358777XBG housed in a 7.0 mm by 7.0 mm size package with 0.65 mm ball pitch.

TC358770AXBG / TC358777XBG exhibits two independent 4-data lane DSI receivers and one 4-lane DisplayPortTM transmitter. Each DSI link data lane can receive data up to 1 Gbps/lane, with up to 8 Gbps total input data rate. Each DSI receiver link can activate 0-, 1-, 2-, 3- or 4-data lanes independently. DP main link can toggle bit rate at either 1.62 or 2.7 Gbps per lane, with maximum output data rate at 8.64 Gbps. DP transmitter is able to operate with 1-, 2 or 4-lanes in its main link.

The target application is for high resolution DisplayPortTM panels, whose bandwidth requirement cannot be met by a single 4-data lane DSI link @4 Gbps. TC358770AXBG is an ideal bridge chip which enables application processors, or hosts, with dual DSI links to drive up to $2560 \times 2048 \times 24$ (or 18) DisplayPortTM panels @60fps.

DSI host controls/configures TC358770AXBG / TC358777XBG chip by using DSI's Generic Long Write packets. TC358770AXBG / TC358777XBG provides mail box registers for host to control (command) DisplayPortTM panel's DisplayPortTM Configuration Data, DPCD, registers. After host writes to these mail box registers, TC358770AXBG starts Aux channel bus cycles to communicate with the DisplayPortTM panel. TC358770AXBG / TC358777XBG supports both Aux native mode and I²C mapped mode.

TC358770AXBG / TC358777XBG supports bi-directional DSI link. Host can read TC358770AXBG's registers by using DSI's Generic Short Read (2 parameter) packets. The read data is returned to host via DSI's reverse direction Low Power packets in data lane 0. Host can also access the DPCD status registers of DisplayPortTM panel by issuing read commands via TC358770AXBG's mail box registers. The maximum read data length is limited to 8 bytes per DSI link read.

Host can also access TC358770AXBG's registers, and DP panel's DPCD registers, by using an I²C bus by addressing TC358770AXBG's slave address 0x68 (1101_000x). Either an external reference clock, RefClk, or DSI link's high speed, HS, clock needs to toggle before programming TC358770AXBG. RefClk is limited to 13, 19.2, 26 or 38.4 MHz only.

TC358770AXBG / TC358777XBG exhibits a SPI slave port, which provides host as third path to program its registers. Since SPI port shares the same pins as those of I^2C 's, only one slave port can be used by the Host. I^2C slave port is active by default, asserting input pin SPI_I2C activates SPI interface. Please tie the unused input pins to ground.

Audio interface can accept I2S or Time Domain Multiplex, TDM, type of audio data. This audio data is packed as Secondary Data Packets which are muxed with video stream before routing out to DP panel via DP's main link. Host needs to provide a 512 * fs, audio sample clock frequency, clock in order for the DisplayPortTM Panel to recover audio clock precisely.

This document assumes that both DSI links use the same clock source to generate DSI links timing. The unintentional clock skews due to two clock sources used to generate DSI links' timing is discussed in "2 Features."

The target system diagram and TC358770AXBG / TC358777XBG block diagram are shown in Figure 1.1 and Figure 1.2, respectively.

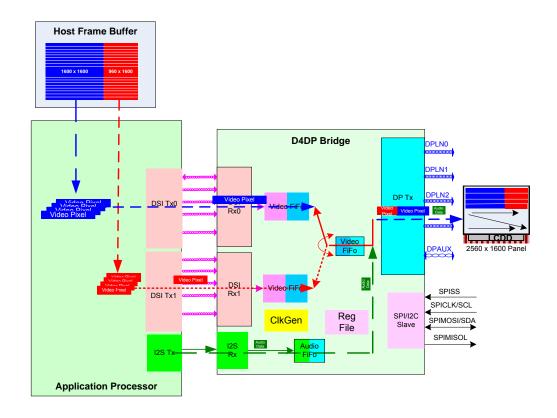


Figure 1.1 TC358770AXBG / TC358777XBG in System Application

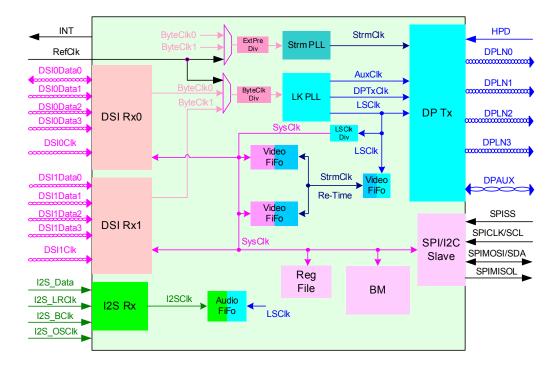


Figure 1.2 TC358770AXBG / TC358777XBG Block Diagram and Functional

2. Features

- TC358770AXBG / TC358777XBG follows the following standards:
 - ♦ MIPI® DSI version 1.02, Jan 2010.
 - ♦ MIPI® D-PHY version 1.0, May 2009.
 - ♦ VESA DisplayPortTM Standard version 1.1a, Jan. 11 2008.
 - → Digital Content Protection LLC, HDCP version 1.3 with DisplayPortTM amendment revision 1.1, Jan. 15 2010.

DSI Receiver

- ♦ Dual 4-Data Lane DSI Link with Bi-direction support at Data Lane 0, it can be used in 1-, 2-, 3- or 4-data lane configuration.
- ♦ Maximum speed at 1 Gbps/lane.
- ♦ Video input data formats: RGB-565, RGB-666 and RGB-888.
- ♦ New DSI V1.02 Data Type, 16-bit YCbCr 422, is supported.
- ♦ Interlaced video mode is not supported.
- ♦ Provide path for DSI host/transmitter to control TC358770AXBG / TC358777XBG and its attached panel.
- ♦ DSI Link High Speed clock, DSIClk or an external clock, RefClk, is required before programming TC358770AXBG.

• DisplayPortTM Source/Transmitter

- ♦ VESA DisplayPortTM Rev 1.1a Standard.
 - Bit Rate @ 1.62 or 2.7 Gbps, Voltage Swing @0.4, 0.6, 0.8 or 1.2 V, Pre-Emphasis Level @0, 3.5 or 6 dB.
 - There are four lanes available in DP main Link, which can operate in 1-, 2- or 4-lane configuration.
 - AUX channel with nominal bit rate at 1 Mbps.
- ♦ After receiving DSI link burst data, TC358770AXBG / TC358777XBG retimes video data to DP panel's pixel clock for Synchronous (to DisplayPortTM link symbol clock, LSClk) Clock Mode operation.
- ♦ SSCG with up to 30 kHz modulation to reduce EMI.
- ♦ Built in PRBS7 Generator to test DisplayPortTM Link without DSI input.
- ♦ Built in Color Bar Generator to verify DisplayPortTM protocol.
- ♦ Support HDCP encryption Version 1.3 with DisplayPortTM amendment Revision 1.1.
- ♦ Secure ASSR (Alternate Scrambler Seed Reset) support for eDP panels
 - System designer connects ASSR_DisablePad to an inner ring VSS_IO pad, e.g. pad E4, to enable eDP panels and ASSR
 - Drive ASSR_DisablePad with an inner ring VDDS pad, e.g. pad D5, for using DP panels and disable ASSR
 - System software read Revision ID field, 0x0500[7:0]:
 - > 0x01 indicates eDP panels are used, DPCD register bit 0x0010A[0] of eDP panel should be set
 - > 0x03 assumes DP panels are connected, DPCD register bit 0x0010A[0] of DP panel should Not be set

I²C Slave Port

- Support for normal (100 kHz), fast (400 kHz) and ultra fast modes (2 MHz, depending on SysClk frequency).
- ♦ External I²C master can access TC358770AXBG / TC358777XBG internal registers via this port.
- ♦ Address auto increment is supported.
- ★ TC358770AXBG / TC358777XBG Slave Port address is 0x68, (binary 1101_000x) where x = 1 for read and x = 0 for write. The slave address can be changed to 0x0F (binary 0001_111x) by tying pin SPI_SS/I2C_ADR_SEL to high.

SPI Slave Interface

- ♦ Slave select pin supported.
- \Leftrightarrow Clock Polarity and Phase as per SPI MODE0 (polarity = 0, phase = 0).
- ♦ Transfer Frame size of 48 bits.
- ♦ Maximum clock speed is up to 30 MHz.

Audio Interface

- ♦ Support either I2S or TDM (Time Division Multiplex) mode.
- ♦ TDM mode can support 2, 4, 6 and 8 channel of audio data.
- ♦ Support 16, 18, 20 or 24-bit PCM audio data word.
- ♦ Sample frequency, fs, supported: 32, 44.1, 48, 88.2, 96, 176.4 & 192 kHz.
- ♦ 512 * fs audio oversample clock is required to generate accurate auido clock timestamps in order for the DisplayPortTM panel to recover audio clock correctly.
- ♦ Ability to insert IEC60958 status bits and preamble bits per channel.

Operation

- ♦ Host programs TC358770AXBG / TC358777XBG either by using DSI link 0 (DSI0), I²C bus or SPI bus.
- → TC358770AXBG / TC358777XBG provides "mailbox registers," 20-bit AuxAddr and 16-byte AuxData, for Host to access DisplayPortTM Panel's DisplayPortTM Configuration Data, DPCD, registers.
- ♦ Host splits a video line data into two streams of DSI video packets. Host has two options to split the video line data:
 - Left-Right Side: Left (first) side video packet goes to DSI0 and Right side data to DSI1.
 - Even-Odd Group: Even (first) groups of pixels are transmitted in DSI0 while Odd ones are carried by DSI1.
 - The number of pixels per group is programmable; from 1 to 64.
 - ➤ The number of pixels per group and/or the number of groups in each video packet can be different between the two DSI links. This feature in connection with TC358770AXBG's capability to support configurable number of data lanes.
 - It is recommended that host pack the split video line data into one video packet for each DSI link before transmitting. However, TC358770AXBG / TC358777XBG supports multiple DSI packets per horizontal line time as long as DSI link bandwidth is enough for the overhead.
- ♦ TC358770AXBG / TC358777XBG is responsible to generate video frame timing based on the register values set by the Host. Host does not have to care/generate video horizontal timings, such as Horizontal Front/Back Porch and Horizontal Pulse width. Host is responsible to send the video data packets to TC358770AXBG / TC358777XBG in time line-by-line and separated each line data by HSS.
 - Host is expected to send exactly one line of video data per horizontal sync period between the two DSI links.
 - Host is expected to start HSS₀, HSS packet of DSI0, and HSS₁, HSS packet of DSI1, either at "the same time" or with fixed delay/skew between them (HSS₀earlier than that of HSS₁).
 - The same time" means within +/- 5 clock cycles.
 - The time skew between the two DSI links' Hsync Start, HSS, packet cannot drift more than one video line time within one video frame period.
 - Host is recommended to use the same clock source to generate both DSI link clocks in order to prevent these two clocks from drifting away.
 - ➤ Otherwise, clock sources with 50 ppm accuracy are required.
 - It is recommended that each DSI link sends HSS and video packets back-to-back. Host can insert variable length of blanking packet between HSS and video packets as long as the bandwidth is allowed.
- ★ TC358770AXBG / TC358777XBG concatenates two (streams of) video packets, one (stream) from each DSI link, into a single DisplayPortTM video stream before transmitting it out to the panel.

Clock Source:

- ♦ An external reference clock, RefClk, is used to drive PLLs for generating DisplayPortTM's stream/pixel clock, StrmClk/PixelClk, and Link Symbol Clock, LSClk.
 - Support DisplayPortTM Synchronous (StrmClk and LSClk) Clock Mode.
 - Allowed RefClk Frequency Value: 13, 19.2, 26, 38.4 MHz.
- ♦ Optionally, DSI DSIClk can be used/divided down to replace RefClk and drive PLLs used to generate the required clocks.
 - The divisor, from DSI ByteClk, can be either
 - \triangleright 3 (115.2 ÷ 3 = 38.4)
 - \rightarrow 4 (104 ÷ 4 = 26)
 - \triangleright 5 (96 ÷ 5 = 19.2)
 - \triangleright 9 (117 ÷ 9 = 13)

Power Supply

♦ MIPI® D-PHY and DP PHY: 1.2 V
 ♦ Core: 1.2 V
 ♦ DP-PHY: 1.8 V

♦ I/O: 1.8 V to 3.3 V (all IO pins must be same power level)

♦ HPD Input Pad: 3.3 V

• Power Consumption (Typical Condition)

- ♦ Sleep State, with RESX asserted
 - 12 mW
- - $2560 \times 1440 \times 24@60$ fps
 - Dual DSIRx, each link @3.7 Gbps
 - > 31 mW for both Links
 - Core
 - ➤ 165 mW
 - DP Tx (2.7 Gbps Link speed @4 lanes, 0.4 V Swing without Pre-Emphasis)
 - ► 168.5 mW
 - Total = 364.5 mW
 - The breakdown of each power rail is shown in the table below

	VDD_DSI (1.2 V)	VDDC (1.2 V)	PLL9 (1.2 V)	DP_12 (1.2 V)	DP_18 (1.8 V)	DPA_18 (1.8 V)	VDDS (1.8 V)	Total Power	Unit
Typical	25.84	153.23	2.27	50.87	56.99	2.69	0		mA
Operation	31.01	162.28	2.73	61.05	102.58	4.84	0	364.5	mW
Power	0.1	3.8	0	2.1	0	2.7	0		mA
Down	0.12	4.56	0	2.52	0	4.86	0	12	mW

Packaging

- $4 \times 10 \times 10$ BGA with 0.4 mm ball pitch
- \Rightarrow 5 × 5 mm²

Note: Attention about ESD. This product is weak against ESD. Please handle it carefully.

3. External Pins

3.1. TC358770AXBG Pin Layout

The mapping of TC358770AXBG signals to the external pins is shown in the figure below.

A1	A2	А3	A4	A 5	А6	A7	A8	А9	A10
DSI0DM_0	DSI0DP_0	DSI1DM_3	DSI1DM_2	DSI1CM	VDD_DSI12	VSS_DSI	DSI1DM_1	DSI1DM_0	TEST
B1	B2	В3	В4	B5	В6	В7	B8	В9	B10
DSI0DM_1	DSI0DP_1	DSI1DP_3	DSI1DP_2	DSI1CP	VSS_DSI	VDD_DSI12	DSI1DP_1	DSI1DP_0	VDDS
C1	C2	С3	C4	C5	C6	С7	C8	С9	C10
VSS_DSI	VDD_DSI12	DIG_4	DIG_3	DIG_2	DIG_1	VSS_IO	DIG_0	RESX	SPI_SCLK/ I2C_SCL
D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
DSI0CM	DSI0CP	VDDC	VSSC	VDDS	SPI_SS	SPI_MOSI/ I2C_SDA	VPGM_1	SPI_MISO	I2S_OSCLK
E1	E2	E3	E4	E 5	E6	E7	E8	E9	E10
VDD_DSI12	VSS_DSI	SPI_I2C	VSS_IO	Disable_ ASSR	DIG_5	INT	I2S_LRCLK	I2S_BCLK	I2S_DATA
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10
DSI0DM_2	DSI0DP_2	TM_CNT	DIG_7	DIG_8	VSSC	VDDC	VPGM_0	VSS_PLL9	VDD_PLL912
G1	G2	G3	G4	G5	G6	G7	G8	G9	G10
DSI0DM_3	DSI0DP_3	PREC_RES_0	PREC_RES_1	VSS_DP	DIFF_SE	HPD	VSS_DP	DPAUXP	DPAUXM
H1	H2	Н3	H4	H5	Н6	H7	Н8	Н9	H10
ATB_1	VDD_PLL18	VDD_PLL12	VSS_PLL	VDD_DP12	VSS_DP	VDD_DP12	VDD_DP18	VSS_DPA	VDD_DPA18
J1	J2	J 3	J4	J5	J6	J7	J8	J9	J10
REFCLK	VDD_DP12	DPLNP_0	VSS_DP	DPLNP_1	VDD_DP12	DPLNP_2	VSS_DP	DPLNP_3	VDD_DP18
K1	K2	К3	К4	К5	K6	К7	К8	К9	K10
ATB_0	VSS_DP	DPLNM_0	VDD_DP18	DPLNM_1	VSS_DP	DPLNM_2	VDD_DP18	DPLNM_3	VSS_DP

Figure 3.1 TC358770AXBG Chip Pin Layout (Top view)

3.2. TC358777XBG Pin Layout

The mapping of TC358777XBG signals to the external pins is shown in the figure below.

A1	A2	А3	A4	A 5	A 6	A7	A8	A9	A10
DSI0DM_0	DSI0DP_0	VDD_DSI12	DSI1DM_3	DSI1DM_2	DSI1CM	VDD_DSI12	DSI1DM_1	DSI1DM_0	VDDIO
B1	B2	В3	B4	B5	В6	B7	B8	B9	B10
DSI0DM_1	DSI0DP_1	VSS	DSI1DP_3	DSI1DP_2	DSI1CP	VSS	DSI1DP_1	DSI1DP_0	RESX
C1	C2	С3	C4	C5	C6	C7	C8	C9	C10
DSI0CM	DSI0CP							SPI_SCLK	SPI_MISO
D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
DSI0DM_2	DSI0DP_2		TEST5	TEST6	TEST7	TEST		SPI_SS	SPI_MOSI
E1	E2	E3	E4	E5	E6	E7	E8	E9	E10
DSI0DM_3	DSI0DP_3		VSS	TEST3	TEST4	VPGM		INT	I2S_OSCLK
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10
VDDC	VSS		TEST9	VSS	TEST8	Disable ASSR		I2S_BCLK	I2S_DATA
G1	G2	G3	G4	G5	G6	G7	G8	G9	G10
PREC_RES_0	PREC_RES_1		DIFF_SE	TEST2	TEST10	VSS		SPI_I2C	I2S_LRCLK
H1	H2	Н3	H4	H5	Н6	H7	Н8	Н9	H10
VDDC	VSS							HPD	VDD_PLL912
J1	J2	J3	J4	J5	J6	J7	J8	J9	J10
VDD_DP12	VSS_DP	DPLNP_0	VSS_DP	DPLNP_1	VSS_DP	DPLNP_2	VSS_DP	DPLNP_3	DPAUXP
K1	K2	К3	K4	K 5	K6	K7	K8	К9	K10
VDD_PLL18	REFCLK	DPLNM_0	VDD_DP18	DPLNM_1	VDD_DP12	DPLNM_2	VDD_DP18	DPLNM_3	DPAUXM

Figure 3.2 TC358777XBG Chip Pin Layout (Top view)

3.3. TC358770AXBG Pinout Description

The following table gives the signals of TC358770AXBG and their function.

Table 3.1 TC358770AXBG Functional Signal List

Group	Pin Name	I/O	Туре	Function	Power
Group		1/0	Туре	Tunction	Supply
	REFCLK		SCH	13, 19.2, 26 or 38.4 MHz Ref Clock	1.8 V
	DIFF_SE	I	Normal	Differential RefClkN is used Singled end RefClk is used	1.8–3.3 V
System (6)	SPI_I2C	Ι	Normal	1: Activate SPI Slave Interface 0: Select I ² C Slave Port	1.8–3.3 V
, , ,	RESX	I	SCH	System Reset – active Low	1.8–3.3 V
	DISABLE_ASSR	I	Normal	1: Disable ASSR, set when connecting to DP panel 0: Enable ASSR for eDP panel application	1.8–3.3 V
	INT	0	Normal	Interrupt Pin to Host	1.8–3.3 V
	DSI0CP	ı	MIPI-PHY	MIPI-DSI0 Rx Clock Lane Positive	1.2 V
DSI0Rx (10)	DSI0CM	l l	MIPI-PHY	MIPI-DSI0 Rx Clock Lane Negative	1.2 V
	DSI0DP[0]	I/O	MIPI-PHY	MIPI-DSI0 Rx Data Lane Positive	1.2 V
	DSI0DM[0]	I/O	MIPI-PHY	MIPI-DSI0 Rx Data Lane Negative	1.2 V
	DSI0DP[3:1]	l l	MIPI-PHY	MIPI-DSI0 Rx Data Lane Positive	1.2 V
	DSI0DM[3:1]	l l	MIPI-PHY	MIPI-DSI0 Rx Data Lane Negative	1.2 V
	DSI1CP	ı.	MIPI-PHY	MIPI-DSI1 Rx Clock Lane Positive	1.2 V
DSI1Rx (10)	DSI1CM	ı.	MIPI-PHY	MIPI-DSI1 Rx Clock Lane Negative	1.2 V
2011101(10)	DSI1DP[3:0]	ı.	MIPI-PHY	MIPI-DSI1 Rx Data Lane Positive	1.2 V
	DSI1DM[3:0]	l I	MIPI-PHY	MIPI-DSI1 Rx Data Lane Negative	1.2 V
	HPD	I/O	OD	DP Rx Interrupt/Detected	1.8–3.3 V
	DPLNP[3:0]	0	DP-PHY	DP Output Main Link Positive	1.8–3.3 V
	DPLNM[3:0]	0	DP-PHY	DP Output Main Link Negative	1.8–3 3 V
DPTx (15)	DPAUXP	I/O	DP-PHY	DP Output AUX Channel Positive	1.8–3.3 V
	DPAUXM	I/O	DP-PHY	DP Output AUX Channel Positive	1.8–3.3 V
	ATB[0]	I/O	DP-PHY	Analog Test Bus Output REFCLKN input when DIFF_SE is asserted	1.8–3.3 V
	ATB[1]	0	DP-PHY	Analog Test Bus Output	1.8–3.3 V
	PREC_RES[1:0]	I	DP-PHY	Precision Resistance (3K @1%)	1.8–3.3 V
	I2S_OSCLK	I	Normal	512 times Audio Sample Clock	18–3.3 V
Audio (4)	I2S_BCLK		Normal	Audio Clock	1.8–3.3 V
7 (ddio (+)	I2S_LRCLK	ı	Normal	Audio Left/Right Selector	1.8–3.3 V
	I2S_DATA	ı	Normal	Audio Data	1.8–3.3 V
	SPI_SCLK / I2C_SCL	ı	OD	SPI Clock / I ² C Clock	1.8–3.3 V
SPI/I2C (4)	SPI_MOSI / I2C_SDA	I/O	OD	SPI Input data / I ² C SDA	1.8–3.3 V
01 1/120 (4)	SPI_MISO	0	N	SPI Output data to Host	1.8–3.3 V
	SPI_SS_I2C_ADR_SEL	ı	N	SPI Slave Select, I ² C Slave Address Select	1.8–3.3 V
	TEST	ı	N	Test Pin, active high	1.8–3.3 V
DFT (10)	TM_CNT	ı	N	Test Pin, please tie to GND	1.8–3.3 V
	DIG[8:7], DIG[5:0]	I/O	N	Test Pin, please tie to GND	1.8–3.3 V
	VDDS(2)	_		VDD for IO power supply	1.8–3.3 V
	VDD_DP18 (4)	_	_	VDD for DP PHY	1.8 V
	VDD_DPA18 (1)	_		VDD for DP Analog PHY	1.8 V
	VDD_PLL18 (1)	_		VDD for DP PLL	1.8 V
Power (22)	VDD_PLL12 (1)	_		VDD for DP PLL	1.2 V
. 61161 (22)	VDD_DP12 (4)	_	_	VDD for DP PHY	1.2 V
	VDD_PLL912 (1)	_		VDD for Stream Clock PLL	1.2 V
	VDD_DSI12 (4)	_		VDD for MIPI-DSI PHY	1.2 V
	VDDC (2)	_		VDD for Internal Core	1.2 V
	VPGM (2)	_		eFuse Programming Voltage	1.8–3.3 V
	VSS_IO (2)	_		VSS for IO power supply	_
	VSS_DP (8)	_		VSS for DP PHY	_
	VSS_DPA (1)	_	_	VSS for DP PHY	_
Ground (19)	VSS_PLL (1)		_	VSS for DP PLL	_
	VSS_PLL9 (1)	_		VSS for Stream Clock PLL	
	VSS_DSI12 (4)	_	_	VSS for MIPI-DSI PHY	
	VSSC (2)			VSS for Internal Core	_

Normal: Normal IO (4 mA)

OD: Pseudo open-drain output, schmitt input

FS/SCH: Fail Safe schmitt input buffer MIPI-PHY: Front-end analog IO for MIPI

DP-PHY: Front-end analog IO for DisplayPort TM

Table 3.2 Pin Count Summary

Group Name	Pin Count
SYSTEM	6
DSI Rx	20
DisplayPort Tx	15
Audio	4
SPI/I2C	4
Test	10
POWER	22
GROUND	19
Total	100

3.4. TC358777XBG Pinout Description

The following table gives the signals of TC358777XBG and their function.

Table 3.3 TC358777XBG Functional Signal List

_			_		Power
Group	Pin Name	I/O	Туре	Function	Supply
	REFCLK		SCH	13, 19.2, 26 or 38.4 MHz Ref Clock	1.8 V
	DIFF_SE	I	Normal	1: Differential RefClkN is used 0: Singled end RefClk is used	1.8–3.3 V
System (6)	SPI_I2C	I	Normal	1: Activate SPI Slave Interface 0: Select I ² C Slave Port	1.8–3.3 V
	DISABLE_ASSR		Normal	1: Disable ASSR, set when connecting to DP panel 0: Enable ASSR for eDP panel application	1.8–3.3 V
	RESX		SCH	System Reset – active Low	1.8–3.3 V
	INT	0	Normal	Interrupt Pin to Host	1.8–3.3 V
	DSI0CP	ı	MIPI-PHY	MIPI-DSI0 Rx Clock Lane Positive	1.2 V
	DSI0CM	l l	MIPI-PHY	MIPI-DSI0 Rx Clock Lane Negative	1.2 V
DSI0Rx (10)	DSI0DP[0]	1/0	MIPI-PHY	MIPI-DSI0 Rx Data Lane Positive	1.2 V
(-)	DSI0DM[0]	I/O	MIPI-PHY	MIPI-DSI0 Rx Data Lane Negative	1.2 V
	DSI0DP[3:1]	!	MIPI-PHY	MIPI-DSI0 Rx Data Lane Positive	1.2 V
	DSI0DM[3:1]	- !	MIPI-PHY	MIPI-DSI0 Rx Data Lane Negative	1.2 V
	DSI1CP DSI1CM	<u> </u>	MIPI-PHY	MIPI-DSI1 Rx Clock Lane Positive	1.2 V 1.2 V
DSI1Rx (10)	DSI1DP[3:0]	1	MIPI-PHY MIPI-PHY	MIPI-DSI1 Rx Clock Lane Negative MIPI-DSI1 Rx Data Lane Positive	1.2 V 1.2 V
	DSI1DM[3:0]		MIPI-PHY	MIPI-DSI1 Rx Data Lane Positive MIPI-DSI1 Rx Data Lane Negative	1.2 V 1.2 V
	HPD	I/O	OD OD	DP Rx Interrupt/Detected	1.8–3.3 V
	DPLNP[3:0]	0	DP-PHY	DP Output Main Link Positive	1.8–3.3 V
	DPLNM[3:0]	0	DP-PHY	DP Output Main Link Negative	1.8–3.3 V
DPTx (13)	DPAUXP	1/0	DP-PHY	DP Output AUX Channel Positive	1.8–3.3 V
	DPAUXM	I/O	DP-PHY	DP Output AUX Channel Positive	1.8–3.3 V
	PREC_RES[1:0]	I	DP-PHY	Precision Resistance (3K @1%)	1.8–3.3 V
	I2S_OSCLK	ı	Normal	512 times Audio Sample Clock	1.8–3.3 V
A ! : (4)	I2S_BCLK	I	Normal	Audio Clock	1.8–3.3 V
Audio (4)	I2S_LRCLK	I	Normal	Audio Left/Right Selector	1.8–3.3 V
	I2S_DATA	I	Normal	Audio Data	1.8–3.3 V
	SPI_SCLK / I2C_SCL		OD	SPI Clock / I ² C Clock	1.8–3.3 V
SPI/I2C (4)	SPI_MOSI / I2C_SDA	1/0	OD	SPI Input data / I ² C SDA	1.8–3.3 V
3F1/12C (4)	SPI_MISO	0	N	SPI Output data to Host	1.8–3.3 V
	SPI_SS_I2C_ADR_SEL	I	N	SPI Slave Select, I ² C Slave Address Select	1.8–3.3 V
DFT (10)	TEST	I	N	Test Pin, active high	1.8–3.3 V
Di 1 (10)	TEST[10:2]	I	N	Test Pin, please tie to GND	
	VDD_IO (1)	_		VDD for IO power supply	1.8–3.3 V
	VDD_DP18 (2)	_	_	VDD for DP PHY/Analog PHY	1.8 V
	VDD_PLL18 (1)	_	_	VDD for DP PLL	1.8 V
Power (12)	VDD_DP12 (2)	_	-	VDD for DP PHY/PLL	1.2 V
1 0WCI (12)	VDD_PLL912 (1)	_	_	VDD for Stream Clock PLL	1.2 V
	VDD_DSI12 (2)	_	_	VDD for MIPI-DSI PHY	1.2 V
	VDDC (2)	_	_	VDD for Internal Core	1.2 V
	VPGM (1)	_		eFuse Programming Voltage	1.8–3.3 V
Ground (11)	VSS_DP (4)		-	VSS for DP PHY/PLL	
== (= ()	VSS (7)	_		VSS for Internal Core/MIPI/IO	_

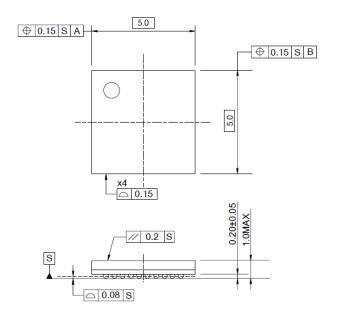
Normal: Normal IO (4 mA)

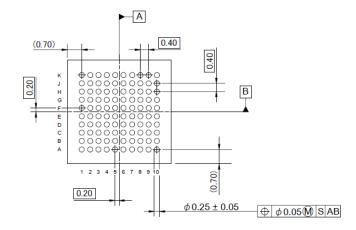
OD: Pseudo open-drain output, Schmitt input

FS/SCH: Fail Safe Schmitt input buffer MIPI-PHY: Front-end analog IO for MIPI

DP-PHY: Front-end analog IO for Display Port

Table 3.4 Pin Count Summary


Group Name	Pin Count
SYSTEM	6
DSI Rx	20
DisplayPort Tx	13
I2S	4
SPI/I2C	4
Test	10
POWER	12
GROUND	11
Total	80



4. Package

TC358770AXBG housed in a 5.0 mm by 5.0 mm size package with 0.4 mm ball pitch. The detailed package drawing is shown below.

P-VFBGA100-0505-0.40-001 "Unit:mm"

Weight: 40 mg (Typ.)

Figure 4.1 TC358770AXBG Package Dimension

Table 4.1 TC358770AXBG Package Details

Description	Normal
Body size (W, mm)	5
Body size (L, mm)	5
Overall thickness (t, mm)	1
Terminal pitch (mm)	0.4

"Unit:mm"

P-VFBGA80-0707-0.65-001

TC358777XBG housed in a 7.0 mm by 7.0 mm size package with 0.65 mm ball pitch. The detailed package drawing is shown below.

7.0 B ⋖ x4 i -□ 0.1 0.25 ± 0.05 // 0.2 S - O.08 S 0.65 ⊕ o o o o o o o **⊕** 0 00000 00000 Н 00 0000 G 00 00 0000 Е 00 0000 00 С 00 00 0000000000 В ф o o o o o o ф 4 5 6 7 8 9 0.65 0.15 M S A M B M 0.08 M S ф

Weight: 65 mg (Typ.)

Figure 4.2 TC358777XBG Package Dimension

Table 4.2 TC358777XBG Package Details

Description	Normal
Body size (W, mm)	7
Body size (L, mm)	7
Overall thickness (t, mm)	1
Terminal pitch (mm)	0.65

5. Electrical characteristics

5.1. Absolute Maximum Ratings

VSS = 0 V reference

VDD18 used for VDDIO as well as VDD-DP18; VDD12 used for VDDC as well as VDD-DSI12

Parameter	Symbol	Rating	Unit
Supply voltage (1.8 V)	VDD18	-0.3 to +3.5	V
Supply voltage (1.2 V)	VDD12	-0.3 to +2.0	V
Supply voltage (IO)	VDD18	-0.3 to +3.5	V
Supply voltage (IO)	VREF	-0.3 to +3.5	V
Input voltage	VIN	-0.3 to VDDIO+0.3	V
Output voltage	VOUT	-0.3 to VDDIO+0.3	V
Storage temperature	Tstg	-40 to +125	°C

5.2. Operating Condition

VSS = 0 V reference

VDD18 used for VDDIO as well as VDD-DP18; VDD12 used for VDDC as well as VDD-DSI12

Parameter	Symbol	Min	Тур.	Max	Unit
Supply voltage (1.8 V)	VDD18	1.71	1.8	1.89	V
Supply voltage (1.2 V)	VDD12	1.14	1.2	1.26	V
Operating frequency (internal)	Fop			270	MHz
Operating temperature	Ta	-20	_	+70	°C

5.3. DC Electrical Specification

 $VSS = VSS_C = VSS_IO = VSS_DSI = VSS_DP = VSS_PLL = VSS_REG = 0 \ V \ reference$

Parameter	Symbol	Min	Тур.	Max	Unit
Input voltage High level CMOS input (Note1)	VIH	0.7 VDDIO	_	VDDIO	V
Input voltage Low level CMOS input (Note1)	VIL	0		0.3 VDDIO	V
Input voltage High level CMOS Schmitt Trigger (Note1)	VIHS	0.7 VDDIO		VDDIO	V
Input voltage Low level CMOS Schmitt Trigger (Note1)	VILS	0	_	0.3 VDDIO	٧
Output voltage High level (Note1)(Note2)	VOH	0.8 VDDIO	_	VDDIO	V
Output voltage Low level (Note1)(Note2)	VOL	0	_	0.2 VDDIO	V
Input leak current High level	IIH1 (Note3)	-10		10	μΑ
Input leak current Low level	IIL1 (Note4)	-10		10	μΑ
Imput leak current Low level	IIL2 (Note5)	-200		-10	μΑ

Note1: VDDIO within recommended operating condition.

Note2: Output current value is according to each IO buffer specification. Output voltage changes with output

current value.

Note3: Normal pin, or Pull-up I/O pin applied VDD18_IO supply voltage to input pin.

Note4: Normal pin applied VSS (0 V) to input pin.

Note5: Pull-up I/O pin applied VSS (0 V) to input pin.

6. Revision History

Table 6.1 Revision History

Revision	Date	Description		
1.0	2012-11-10	Start from 770XBG Rev 0.99D Add ASSR support Add Power consumption for each voltage rail		
1.1	2013-01-15	Update MIPI copyright Footer: Change "Toshiba America Electronic Components, Inc." to "Toshiba Corporation and its affiliates." Update VSDelay Calculation (assume DP data lane is either 2 or 4 lanes)		
1.2	2013-10-25	Typo correction on register Tx_Rx_TA Add Audio Functionality Description		
1.3	2013-11-17	1. Update register field description for 0x0644[23:18]		
1.4	2014-06-20	1. Add 777XBG package		
1.41	2016-07-20	1. Typo Correction on DSI1DP[3:0]/DSI1DM[3:0]		
1.42	2016-09-01	1. Modified duplicate DSI1CP/DSI1CM.		
1.6	2017-10-23	Corrected typo. Changed header, footer and the last page. Changed corporate name.		

RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA". Hardware, software and systems described in this document are collectively referred to as "Product".

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE
 EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH
 MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT
 ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without
 limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for
 automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions,
 safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE
 PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your
 TOSHIBA sales representative.
- · Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
 applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
 FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
 WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
 LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
 LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
 SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
 FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
 Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES
 OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION