

80dB PSRR, Low Noise, RF, 300mA LDO in S0T23-5

DESCRIPTION

ETA5051 is a low-dropout (LDO) low-power linear voltage regulator features high power-supply rejection ratio (PSRR), ultralow-noise, fast start-up, and excellent line and load transient responses. Its PSRR can be as high as 80dB and its noise level can be as low as 30µVRMS of output voltage noise at 2.8V output with a 0.1µF bypass capacitor. Therefore, ETA5051 is an ideal power supply for noise-sensitive applications such as RF transmissions, cellphones, CMOS sensors and audios etc.

ETA5051's output voltage is factory set and is housed in S0T23-5 package.

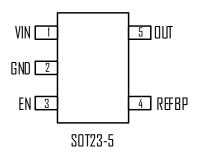
FEATURES

- High PSRR, 80 dB at 10Hz,70dB at 10Kz
- Low Noise, 30µVRMS
- Stable With a Wide Range of C5eramic Capacitor larger than 1µF
- Excellent Load and Line Transient Response
- Very Low Dropout Voltage
- 300mA output current

APPLICATIONS

- RF power
- Sensors
- Audio

TYPICAL APPLICATION



ORDERING INFORMATION

PART No.	TOP MARK	Top Mark Explanation	PART No.	TOP MARK	Top Mark Explanation
ETA5051V18S2F	Ь8 <u>ҮW</u>	b8= Product Code, <u>YW</u> = Date Code	ETA5051V285S2F	<u>c8YW</u>	<u>c8</u> = Product Code, <u>YW</u> = Date Code
ETA5051V25S2F	c5 <u>YW</u>	c5= Product Code, <u>YW</u> = Date Code	ETA5051V30S2F	dО <u>YW</u>	dO= Product Code, <u>YW</u> = Date Code
ETA505IV28S2F	c8 <u>YW</u>	c8= Product Code, <u>YW</u> = Date Code	ETA5051V33S2F	d3 <u>YW</u>	d3= Product Code, <u>YW</u> = Date Code
PACKAGE	SOT23-5		Pcs/REEL	3000	

PIN ICONFIGURATION

ABSOLUTEMAXIMUM RATINGS

(Note: Exceeding these limits may damage the device. Exposure to absolute maximum rating conditions for long periods may Saffect device reliability.)

VIN, EN, VOUT, FB, REFBP Voltage		0.	3V to 6V
Operating Temperature Range		40°C	to $85^{\circ}\mathrm{C}$
Storage Temperature Range		55°C	to 150°C
Thermal Resistance	θ_{JA}	θ JC	
SOT23-5	180	90	ºC/W
Lead Temperature (Soldering 10ssec)			260°C
ESD HBM (Human Body Mode)			2KV
ESD MM (Machine Mode)			200V

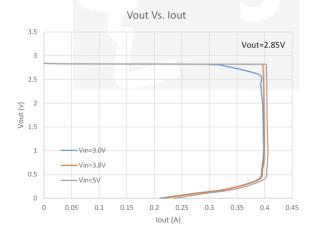
ELECTRICAL CHACRACTERISTICS

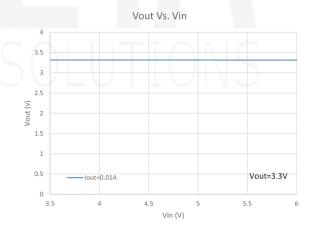
 $(V_{IN} = 3.8V, V_{OUT} = 2.8V, unless otherwise specified. Typical values are at TA = 25oC.)$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT	
Input Voltage Range (1)		2.7		5.5	٧	
Under Input Voltage Lock Out	Rising, Hysteresis=100mV		2.6		٧	
Ground Current	OμA ≤ IOUT ≤ 200mA		170		μА	
Shutdown Current	VEN = 0V, 2.7V ≤ VIN ≤ 5.5V			1	μА	
Dropout Voltage ⁽²⁾	10UT = 200mA		135		m۷	
Continuous Output Current				300	mA	
Output Current Limit	VOUT = 95%	350	600		mA	
Output Foldback Current Limit	VOUT = OV		300		mA	
Line Regulation	VOUT + 1V ≤ VIN ≤ 5.5V			0.12	%/V	
Load Regulation	OμA ≤ IOUT ≤ 200mA				m۷	
	IOUT =100mA	1.768	1.8	1.832	V	
		2.455	2.5	2.545		
V V-14		2.750	2.80	2.850		
Vout Voltage		2.799	2.85	2.901		
		2.946	3.0	3.054		
		3.240	3.3	3.360		
REFBP Voltage		1.188	1.200	1.212		
	Freq = 100Hz, 10UT = 10mA		80			
D C D_:#!: D_#:_	Freq = 1KHz, IOUT = 100mA		80 70		dB	
Power Supply Rejection Ratio	Freq = 10kHz, 10UT = 100mA					
	Freq = 100kHz, 10UT = 100mA		60			
Output Noise Voltage			30		μVRMS	
	Floating REFBP, lout=0		95		μs	
Start-up time,	Crefbp = 4.7nF, lout=0		105			
	Crefbp = 10nF, lout=0		110			

ETA5051

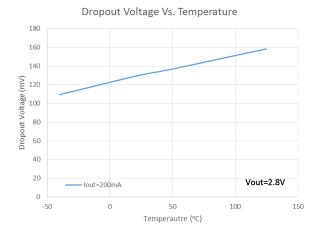
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
	Crefbp = 33nF, lout=0		128		
EN pin input Logic Low	2.7V ≤ VIN ≤ 5.5V			0.5	V
EN pin input Logic High	2.7V ≤ VIN ≤ 5.5V	1.2			٧
Thermal Shutdown	Rising, Hysteresis =30°C		150		°C

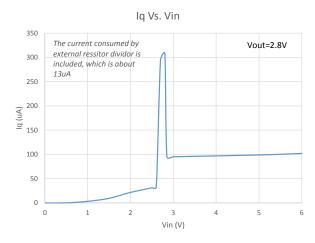

^{(1):} Minimum V_{IN} is 2.7~V or V_{OUT} + V_{DROPOUT} , whichever is greater.

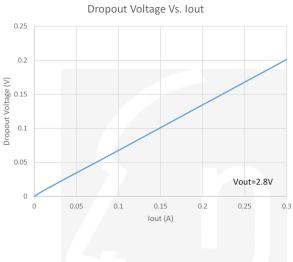

PIN DESCRIPTION

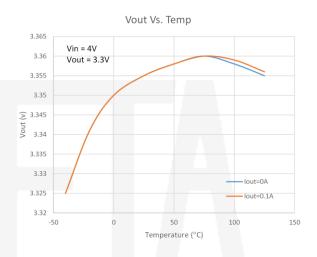
PIN#	NAME	DESCRIPTION
1	VIN	Input Supply Pin
2	GND	Ground Pin
3	EN	Enable Pin. Drive it high to enable IC, drive it low to disable. EN can be connected to IN if not used.
4	REFBP	Reference Voltage Bypass pin. Bypass this pin to GND by an external capacitor to improve PSRR performance at high frequency.
5	ОИТ	Output of regulator

TYPICAL CHARACTERISTICS

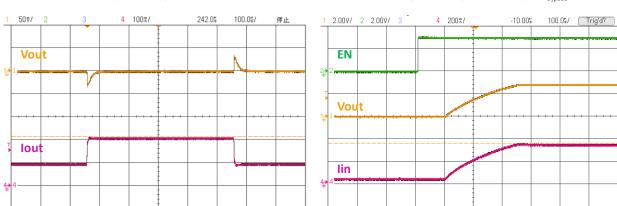

(Typical values are at $T_A = 25^{\circ}C$ unless otherwise specified.)



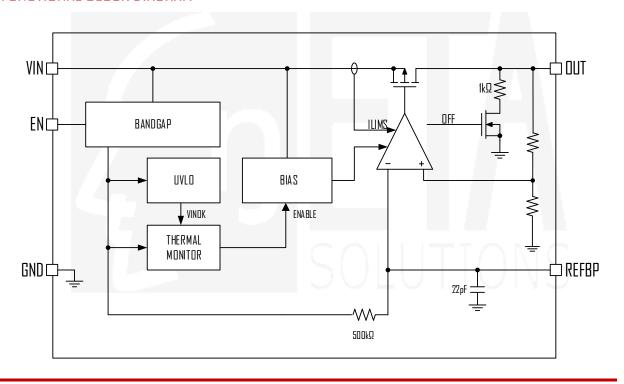



^{(2):} Only measure for options of VOUT higher than 2.7V because minimum of VIN be 2.7V.





Load Transient Response


Vin=5V, Vout=3.3V, lout=0.1-0.2A

Startup Waveforms

Vin=4.2V, Vout=2.8V, lout=300mA, No C_{bypass}

FUNCTIONAL BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

The ETASOSI family of LDO regulators has been optimized for application in noise-sensitive equipment. The device features extremely low dropout voltages, high PSRR, ultralow output noise, low quiescent current, and enable-input to reduce supply currents to less than IµA when the regulator is turned off.

Enable Sequence

ETA5051 is enabled when all below conditions happen. Otherwise, ETA5051 is in standby mode.

- EN pin voltage above Logic High level
- VIN is higher than Under-Voltage-Lock-Out Level.

Junction Temperature is not at Over-Temperature Protection level.

Once all above conditions happen, ETA5051 first enable BANDGAP, and Pre-charge REFBP before enable internal 2.64V regulator and BIAS. Finally, when internal bias ready, ETA5051 enable LDO core.

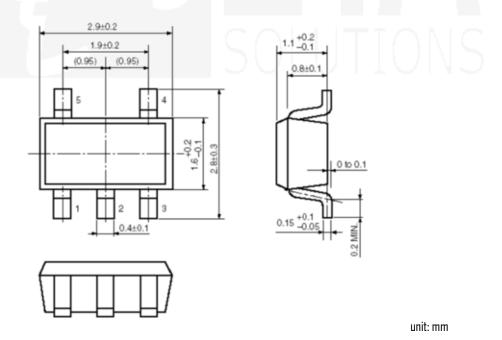
ETA5051 is completed forced in shutdown mode when EN pin is at below LOGIC_LOW that supply current is less than 1 μ A. Otherwise, part only shutdown the VOUT while other circuit still in operation. Once ETA5051 is in shutdown conditions, Output is discharged by 1 $k\Omega$ resistor.

Dutput Current Limit and Foldback Current Limit

ETA5051 family features an internal current limit. In normal operation, the ETA5051 limits output current to approximately 600mA. When current limiting engages, the output voltage scales back linearly until the over current condition ends.

In case output is in hard short conditions, ETA5051 also features an internal foldback limit that reduces the output current limit to a lower level, 300mA, then reduce power dissipation ratings of the package

Reference Bypass


ETA5051 provides a pin that bypass internal reference voltage with an external capacitor. This improves PSRR at high frequency and also help reduces output noise.

Over-Temperature Protection

Thermal protection disables the output when the junction temperature rises to approximately 150°C, allowing the device to cool down. When the junction temperature cools to approximately 120°C, the output circuitry is again enabled. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This cycling limits regulator dissipation, protecting the device from damage as a result of overheating.

PACKAGE DUTLINE

Package: SOT23-5

